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• Bayes factors would help science deal with the credibility crisis.
• Bayes factors retain their meaning regardless of optional stopping.
• Bayes factors retain their meaning despite other tests being conducted.
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• The logic of Bayes helps illuminate the benefits of pre-registration.

a r t i c l e i n f o

Article history:
Available online 7 January 2016

Keywords:
Bayes factor
Null hypothesis
Stopping rule
Planned vs post hoc
Multiple comparisons
Confidence interval

a b s t r a c t

Bayes factors provide a symmetricalmeasure of evidence for onemodel versus another (e.g. H1 versusH0)
in order to relate theory to data. These properties help solve some (but not all) of the problems underlying
the credibility crisis in psychology. The symmetry of the measure of evidence means that there can be
evidence for H0 just as much as for H1; or the Bayes factor may indicate insufficient evidence either way.
P-values cannotmake this three-way distinction. Thus, Bayes factors indicatewhen the data count against
a theory (and when they count for nothing); and thus they indicate when replications actually support
H0 or H1 (in ways that power cannot). There is every reason to publish evidence supporting the null as
going against it, because the evidence can bemeasured to be just as strong either way (thus the published
record can be more balanced). Bayes factors can be B-hacked but they mitigate the problem because a)
they allow evidence in either direction so people will be less tempted to hack in just one direction; b) as
a measure of evidence they are insensitive to the stopping rule; c) families of tests cannot be arbitrarily
defined; and d) falsely implying a contrast is planned rather than post hoc becomes irrelevant (though
the value of pre-registration is not mitigated).

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

A Bayes factor is a form of statistical inference in which one
model, say H1, is pitted against another, say H0. Both models need
to be specified, even if in a default way. Significance testing (us-
ing only the p-value for inference, as per Fisher, 1935) involves
setting up a model for H0 alone—and yet is typically still used to
pit H0 against H1. I will argue that significance testing is in this
way flawed, with harmful consequences for the practice of sci-
ence (Wagenmakers, 2007). Bayes factors, by specifying two mod-
els, resolve several key problems (though not all problems). After
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defining a Bayes factor, the introduction first indicates the general
consequences of having two models (namely, the ability to obtain
evidence for the null hypothesis; and the fact the alternative has
to be specified well enough to make predictions). Then the body
of the paper explores four ways in which these consequences may
change the practice of science for the better.

1.1. What is a Bayes factor?

In order to define a Bayes factor, the following equation can be
derivedwith a few steps from the axioms of probability (e.g. Stone,
2013): Normative posterior belief in one theory versus another in
the light of data = a Bayes factor, B × prior belief in one theory
versus another. That is, whatever strength of belief one happened
to have in different theories prior to data (which will be different
for different people), that belief should be updated by the same
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amount, B, for everyone.1What this equation tells us is that if we
measure strength of evidence of data as the amount by which
anyone should change their strength of belief in the two theories
in the light of the data, then the only relevant information is
provided by the Bayes factor, B (cf Birnbaum, 1962). Conventional
approximate guidelines for strength of evidence were provided
by Jeffreys (1939, though Bayes factors stand on their own as
continuousmeasures of degrees of evidence). If B > 3 then there is
substantial evidence for H1 rather than H0; if B < 1/3 then there
is substantial evidence for H0 rather thanH1; and if B is in between
1/3 and 3 then the evidence is insensitive.

The term ‘prior’ has two meanings in the context of Bayes
factors. P(H1) is a prior probability ofH1, i.e. howmuch youbelieve
in H1 before seeing the data. But the term ‘prior’ is also used to
refer to setting up the model of H1, i.e. to state what the theory
predicts, used for obtaining P(D|H1), the probability of obtaining
the data given the theory. When measuring strength of evidence
with Bayes factors, there is no need to specify priors in the first
sense; but there is a need to specify a model (prior in the second
sense). To know how much evidence supports a theory one must
know what the theory predicts; but one does not have to know
howmuch one believes in a theory a priori. In this paper, specifying
what a theory predicts will be called a ‘model’.

1.2. The consequences of having two models

The specification of two models in a Bayesian approach, rather
than one in significance testing, has two direct consequences: One
is that Bayes factors are symmetric in a way that p-values are
asymmetric; and, second, Bayes factors relate theory to data in a
direct way that is not possible with p-values. Here I clarify what
these two properties mean; then the paper will consider in detail
how these properties are important for how we do science.

First, a Bayes factor, unlike a p-value, is a continuous degree
of evidence that can symmetrically favour one model or another
(e.g. Rouder, Speckman, Sun, Morey, & Iverson, 2009). Let us call
the models H1 and H0. By using conventional criteria, the Bayes
factor can indicate whether evidence is weak or strong. Thus, the
Bayes factor may indicate (i) strong evidence for H1 and against
H0; or (ii) strong evidence for H0 and against H1; or (iii) not much
evidence either way. That is a Bayes factor can make a three-
way distinction. A p-value, by contrast, is asymmetric. A small
p-value (often) indicates evidence against H0 and for the H1 of
interest; but a large p-value does not distinguish evidence for
H0 from not much evidence for anything. A p-value only tries to
make a two-way distinction: evidence against H0 (i.e. (i)) versus
anything else (i.e. (ii) or (iii), without distinguishing them) (and
even this it does not do very well; Lindley, 1957). A large p-value
is, therefore, never in itself evidence for H0. The asymmetry of
p-values leads to many problems that are part of the ‘credibility
crisis’ in science (Pashler & Wagenmakers, 2012). The reason why
p-values are asymmetric is that they specify only one model: H0.
This is their simplicity and hence their beguiling beauty. But their
simplicity is simplistic. This paper will argue that using Bayes
factors will therefore help solve some (but not all) of the problems
leading to the credibility crisis, by changing scientific practice.

1 In symbols:

P(H1|D)/P(H0|D) = P(D|H1)/P(D|H0) × P(H1)/P(H0)

P(H1)/P(H0) is the ratio of the probabilities (or strength of belief) in H1 versus H0,
i.e. the prior odds of H1 versus H0. P(H1/D)/P(H0|D) is the ratio of the probabilities
of the two theories in the light of the data; i.e. the posterior odds. The remaining
term is the Bayes factor, B, which states that the data are B times more probable
under H1 rather than H0. Briefly, posterior odds = B × prior odds.
The symmetry is particularly important in determining support
for the null hypothesis, interpreting replications, and p-hacking by
optional stopping, all practical issues discussed below.

The strict use of only onemodel is Fisherian; Neyman and Pear-
son (1967) argued that twomodels should be used, and introduced
the concept of power, which helps introduce symmetry in infer-
ence, in that it provides grounds for asserting the null hypothesis.
Unfortunately power is a flawed solution (Dienes, 2014) and that
might explain why it is not always taken up. Power cannot be de-
termined based on the actual data in order to assess their sensitiv-
ity; hence, a highpowerednon-significant resultmight not actually
be evidence for the null hypothesis, as we shall see. Further, it in-
volves (or should involve) specifying only the minimal interesting
effect size, which is a rather incomplete specification of H1 (and it
is the aspect of H1 most difficult to make in many cases). In prac-
tice, psychologists are happy to assert null hypotheses even when
power has not been calculated, and inference is based on p-values
alone (as we shall see).

The second consequence of having to specify H1 as well as H0
is that thought must be given to what one’s theory actually pre-
dicts (Vanpaemel, 2010). In this way, Bayes factors allow a more
intimate connection between theory and data than p-values allow.
This issue is particularly important for dealing with issues of mul-
tiple testing and the timing of theorizing versus collecting data. I
conjecture that a Bayesian view of these issues will lead to a more
probing exploration of theory than significance testing encourages,
a point taken up at the end.

The paper now considers in detail the specific changes to
scientific practice the use of Bayes factors may bring about.
Specifically it considers, in order, issues of obtaining support for
the null hypothesis; of the effect of stopping rules on error rates;
of dealing with multiple comparisons in theory evaluation; and,
finally, of planned versus post hoc tests and the role of timing of
theory and data in scientific inference. I will argue that Bayesian
inference compared to significance testing leads to a re-evaluation
of all these issues.

2. Changes to scientific practice

2.1. Supporting the null hypothesis

Here we consider in turn the problem of providing support for
the null hypothesis; how Bayes factors help; andwhy the orthodox
solution of using power does not solve the problem, as illustrated
by high powered attempts to replicate studies.
The problem. The key problem created by the asymmetry of
the p-value is that significance testing per se (i.e. inference by
use of p-values) cannot provide evidence for the null hypothesis.
Indeed, that is exactly how p-values are asymmetric. Despite that,
a non-significant result is often in practice taken as evidence for a
null hypothesis. For example, to take one of the most prestigious
journals in psychology, in the 2014 April issue of the Journal of
Experimental Psychology: General, in 32 out of the 34 articles, a
non-significant result was taken as support for a null hypothesis
(as shown by the authors claiming no effect), with no further
grounds given for accepting the null other than that the p-value
was greater than 0.05. That is, in the vast majority of the articles
where there were no grounds for accepting the null hypothesis at
all, the null hypothesis was nonetheless accepted, often in order to
draw important theoretical conclusions. The effect of this practice
can be disastrous. For example, the drug paroxetine was originally
declared to have no risk of increased suicide in children because
the increase of risk was non-significant (it was later shown to
have such a risk, Goldacre, 2013). Human death aside, do we want
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to guide our theory development partly on conclusions that are
groundless2?

Researchers may know that inferring the null hypothesis from
a non-significant result is suspect. That obviously does not stop the
practice from happening, it just makes sure it happens freely in pa-
perswhere there also are also key significant results. Butwhere the
key result is non-significant, papers are less likely to be published
(Rosenthal, 1979; Simonsohn, Nelson, & Simmons, 2014). The re-
search record becomes a misleading representation of the evi-
dence. Because the p-value is asymmetric, people seek to get the
evidence in the only way it can appear to be strong—as against H0.
Thus, apart from failure to publish relevant evidence concerning a
theory, another outcome is p-hacking: Pushing the data in the one
direction it can for it to be recognized as strong evidence, by use of
analytic flexibility (John, Loewenstein, & Prelec, 2012; Masicampo
& Lalande, 2012; Simmons, Nelson, & Simonsohn, 2011). No won-
der there is a crisis in the credibility of our published results.
How Bayes factors help. Bayes factors partly solve the problem
by allowing the evidence to go both ways. This means you can
tell when there is evidence for the null hypothesis and against
the alternative. You can tell when there is good evidence against
there being a treatment side effect (and when the evidence is just
weak); you can tell when the data count against a theory (and
when they count for nothing). There is every reason to publish
evidence supporting the null as going against it, because the
evidence can be measured to be just as strong either way (thus
the published record can be balanced). In fact, the Bayes factor is
the only way for indicating the strength of evidence for a point
null hypothesis (though for a Bayes factor H0 need not be a point
value; Dienes, 2014; Morey & Rouder, 2011). People can still ‘‘B-
hack’’ (i.e. massage data to get a Bayes factor just beyond some
conventional threshold by the use of analytic flexibility), but we
will explore how options are more limited than for p-hacking in
important ways.
Power and replication. Replications are hard to evaluate by ref-
erence to p-values. If an original result was significant, and a
direct replication non-significant, it might feel like a failure to
replicate. But as p-values cannot indicate whether the null hypoth-
esis is supported, a non-significant replication tells one nothing in
itself. This is even true for high powered non-significant replica-
tions. The point can be illustrated conceptually by considering a
high powered replication where both H0 and H1 specify point val-
ues. If the sample mean is exactly half way between H0 and H1,
then no matter what the power, the data do not discriminate the
theories in any way. In fact, if in a non-significant experiment, the
sample mean were closer to H1 than H0, the data would support
H1 more than H0 no matter how highly powered the experiment.
Thus, it is rational to consider how the data actually come out to
consider what they say, and power cannot do this.

Most theories allowmore than just one point value; then Bayes
factors can be used to specify the strength of evidence. For ex-
ample, consider the Reproducibility Project (https://osf.io/ezcuj/)
spearheaded by Brian Nosek (Open Science Collaboration, 2015).
The aim was to establish how well 100 experiments published
in 2008 in high impact journals in psychology replicate, when
the exact methods specified are followed as closely as possible.
In the replication of Correll (2008) by LeBel (https://osf.io/fejxb/
wiki/home/), the original ‘‘PSD slope’’ reported in the Correll pa-
per (Study 2) was 0.18, SE = 0.077, F(1, 68) = 5.52, p < 0.02.
The attempted direct replication doubled sample size to achieve a
power of 85%. The slope in the replication was 0.05, SE = 0.056,

2 The sample difference being small, zero, or in the wrong direction does not in
itself provide sufficient grounds either; see Dienes (2014) for examples.
F(1, 145) = 0.79, p = 0.37. This looks like a ‘‘failure’’ to repli-
cate. In fact, calculating a Bayes factor (see Dienes, 2014, 2015, for
details of how to calculate), BH(0, 0.18) = 0.69, indicating that the
evidence is weak and does not substantially support either H0 or
H1 (the value of B is between 1/3 and 3).3

In case it is thought that 85% power just is not good enough,
consider the replication of Estes, Verges, and Barsalou (2008).
These original authors found an incongruent priming condition
caused more errors than a congruent condition, the difference
being 4.8%, SE = 1.6%, F(1, 17) = 9.33, p = 0.007. Renkewitz and
Muller (https://osf.io/vwnit/) attempted an exact replication with
a power of well over 95% for detecting this error difference. In the
replication, they found a difference in errors of 1.4%, SE = 1.1%,
F(1, 21) = 1.45, p = 0.24. This is non-significant and hence a
‘‘failure’’ to replicate. However, BH(0, 4.8) = 0.79, indicating the
evidence was not discriminating between H0 and H1: there are no
grounds for changing one’s confidence in either H0 or H1 to any
substantial degree based on the replication. On the other hand, it
is quite possible to get evidence for the null using a Bayes factor
in experiments with such numbers of participants; in the same
replication, the effect on reaction times, which was significant in
the original paper (a 37 ms effect, SE = 6 ms, F(1, 17) = 40.19,
p < 0.001), was non-significant in the replication (0.2 ms, SE =

6 ms, F(1, 21) = 0.001, p = 0.5), and also BH(0,37) = 0.19
(i.e. B < 1/3), with 22 subjects, indicating substantial support for
the null. The point is that knowing power alone is not enough; once
the data are in, the obtained evidence needs to be assessed for how
sensitively H0 is distinguished from H1, and power cannot do this
(Dienes, 2014). (Compare Etz, 2015, for a Bayesian analysis of the
experiments in the Reproducibility Project.)

In sum, Bayes factors would enable amore informed evaluation
of replications than p-values allow. The need for more direct
replications is clear (Pashler & Harris, 2012); but replications are
no good if one cannot properly evaluate the results.

Now we will consider some inferential paradoxes. The asym-
metry of p-values leads to a sensitivity to stopping rules which is
inferentially paradoxical, because the same data and theories can
be evaluated differently depending on the intentions inside the
head of the experimenter (e.g. Berger & Wolpert, 1988). We now
consider this and other inferential paradoxes that allow p-hacking.
The paradoxes mean that inferential outcome depends on more
than the actual data obtained, and may depend on things which
are in practice unknowable (the intentions and thoughts of exper-
imenters; see Dienes, 2011 for explanation). The need to correct
for multiple testing with significance testing is a paradox in that
theories may pass or fail tests on data collected that was irrele-
vant to the theory, but corrected for anyway. Instead Bayesian ap-
proaches inwhich themodel of H1 is informed by scientific context
focus only on the relation between theory and the data that bear
on specifically that theory. Similarly, the use of timing of theory
versus data as inferentially relevant in itself disguises what is ac-
tually very important about pre-registration of studies, as we will
discuss.

3 Meta-analytic combined estimates should be analysed with Bayes factors too
(Dienes, 2014; Rouder &Morey, 2011). In this case, the fixed effect combined mean
estimate of Study 2 of Correll (2008) and the replication is 0.095, SE = 0.0453,
t(213) = 2.10. In Study 1 of Correll the PDS slope was 0.18; Study 2 sought
to manipulate this slope, and 0.18 remains a useful scale for predicting effects in
Study 2 and the replication. On the combined data of Study 2 and the replication,
BH(0, 0.18) = 3.78, substantial support for H1 with all data combined. (BH(0,0.18)
indicates that H1 was represented as a half-normal with a mode of zero and a
standard deviation of 0.18; that is, the population difference is represented as being
between 0 and roughly 2 × 0.18. See Dienes (2014), for explanation.) The Bayesian
version of meta-analysis enjoys all the advantages of Bayesian inference in general;
for example, it allows one to obtain support for a null hypothesis, not possible with
a meta-analysis using significance testing.

https://osf.io/ezcuj/
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2.2. The stopping rule

First we consider the problem, how stopping rules influence
error rates, and thus allow cheating. Then we consider how this
problem is side-stepped by Bayes factors. Finally, we consider
how stopping rules can lead to biased estimates, and the Bayesian
answer to this problem.
The problem. Imagine that after each addition of an observation
to data, a p-value is calculated. If H0 is false, the p-value is driven
towards small values. However, if H0 is true, the p-value does a
randomwalk. That means sooner or later, if H0 is true, the p-value
will randomly wander below 0.05 (Rouder et al., 2009). So if one
uses significance testing, it is strictly forbidden to keep topping
up participants, without a pre-planned correction. Yet John et al.
(2012) estimate that virtually 100% of psychologists at major US
universities have topped up participants after initially failing to
get a significant result. If one decides to continue running until
a significant result is obtained, significance is guaranteed even if
H0 is true. Thus, one has to decide on the conditions one would
stop in advance of collecting data—and then stop at that point. By
contrast, a Bayes factor B is symmetric. If H0 is false, then, in the
long run, B is driven upwards. If H0 is true, B is driven towards zero.
Because B is driven in opposite directions dependent on which
theory is true, when using a Bayes factor one can stop collecting
data whenever one likes (Savage, 1962). Thus, use of Bayes factors
respects the ‘‘stopping rule principle’’ according to which the only
evidence about a parameter is contained in the data and not the
stopping rule used to collect them (Berger & Berry, 1988a,b; Berger
& Wolpert, 1988).

A useful rule would be to stop collecting data when either B
is greater than 3 or less than 1/3; then one has guaranteed an
informative conclusion with a minimum number of participants
(cf. Schoenbrodt,Wagenmakers, Zehetleitner, & Perugini, in press).
(Something which power cannot guarantee: A study can be high-
powered but still the data do not discriminate between the
models.) While significance testing allows p-hacking by optional
stopping, one cannot B-hack by optional stopping.

The possibility that one can legitimately ignore the stopping
rule would be such a dramatic and useful change to practice, that it
might seem too good to be true. Consider the following argument
for why the conclusion might be false. The value of B, as any
statistic, is subject to noise, and surely one can capitalize on that
noise by stopping for example when B > 3 (if it were to be), even
when H0 is true? Indeed, Yu, Sprenger, Thomas, and Dougherty
(2014) and Sanborn andHills (2014) showed that one could indeed
substantially raise the false alarm rate for B when H0 was true by
using just such a stopping rule. The effect can be illustrated even
with a symmetric stopping rule. Imagine an experiment where
each participant provides a difference score, say their cognitive
performancewith andwithout a cognitive enhancer.Wehave prior
information that implies that if there were to be an effect of a
cognitive enhancer, it would be about one point for the dependent
variable used. Following Dienes (2014), H1 is modelled as a half-
normal with an SD of the expected size of effect (i.e. 1). For
simplicity, assume the population standard deviation of scores is 1.
When running for a fixed 100 trials, simulation of the experiment
1000 times (see Appendix A for details) showed that when H0 was
true, B exceeded three 1% of the time, and B was less than a third
86% of the time. That is the false alarm rate was only 1%.

Table 1 indicates what happened when the stopping rule was
as follows: After every participant, check to see if either B > 3 or
else B < 1/3. If so, stop. Otherwise run another participant and
continue until either the threshold is crossed or else 100 subjects
are reached. In terms of researcher practice, this is a worst case
scenario; researchers do not typically check after every participant,
but maybe only two or three times when the initial result is non-
significant; see Dienes (2011) for why the latter practice is wrong
when uncorrected for orthodox statistics (and see Sagarin, Ambler,
& Lee, 2014, for appropriate corrections). Each number in Table 1
is the outcome of 200 simulations. Appendix B gives the R code.
Appendix A shows the results for different types of Bayes factors.
Notice that when the same threshold for B (i.e. three/a third) is
used as for our example with a fixed number of subjects in the
last paragraph, the false alarm rate for when H0was true increased
from 1% to 14%. That is, the stopping rule affected the false alarm
rate of the Bayes factor. Does this not contradict the claim that
inference using B is immune to the stopping rule?
Why the stopping rule is a not a problem for Bayes factors.
Rouder (2014) argued elegantly for why the sensitivity of the
false alarm rate to the stopping rule is consistent with inference
from B remaining immune to the stopping rule. Here the same
argument will be put slightly differently. First notice that the
equation ‘posterior odds = B ∗ prior odds’ follows from the
axioms of probability. That is, given that the axioms normatively
specify how the strength of belief should be changed, B is
normatively the amount by which the strength of belief should be
changed regardless of the stopping rule. If strength of evidence is
measured by howmuch in principle beliefs should normatively be
changed, then B is normatively themeasure of strength of evidence
discriminating two theories. The stopping rule does not come into
the equation, so the claim is true regardless of the stopping rule.
But how does this fit with false alarm changing according to the
stopping rule?

Notice that B is the measure of evidence regardless of the
specific value of P(D|H0). That is, P(D|H0) can in principle vary
as B stays the same. B will still be the measure of strength of
evidence—because P(D|H1) will change by just the right amount.
Experimental psychologists are used to such reasoning with signal
detection theory. Discriminability in a perceptual decision task
can remain the same as bias changes; we would never dream of
measuring discriminability by measuring the false alarm rate in
a signal detection experiment. Obviously the same point applies
to H0 versus H1. That is, false alarm rate of a procedure can
change when discriminating H0 versus H1 even when the ability
of the procedure to discriminate remains invariant. The evidence
provided by an observation remains the same even if the criterion
is changed (and hence false alarm rate changes). B is the invariant
measure of the strength of evidence for H1 versus H0, regardless of
false alarm rate.

We as experimental psychologists have become fixed on false
alarm rate for measuring the strength of evidence for a theory
because we were taught to consider only one model (H0) for
significance testing. It is like trying to perform signal detection
theorywith only one distribution, that for noise alone. But in signal
detection theory terms, that is a nonsense; we need the signal
distribution as well. Bayes considers two distributions: One for H0
and one for H1. False alarm rate is, by itself, uninformative about
how well the theories are discriminated.

The Supplementary Materials4 give R code for measuring the
false alarm and hit rates for Bayes factors for optional stopping.
One can vary, amongst other things, the threshold, population
effect sizes, and theminimumormaximumnumber of participants
before optional stopping can begin. Table 2 shows the same
situation as Table 1, but with a minimum of 10 participants
before optional stopping could start. The false alarm rate for a
threshold of three is halved (see first column in Table 2 compared
to Table 1). B will be most variable early on in testing, because B

4 http://dx.doi.org/10.1016/j.jmp.2015.10.003.
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Table 1
Per cent decision rates for accepting/rejecting H0 for BH(0,1) (i.e. a Bayes factor in which H1 has been represented as a half-normal,
with mode = 0, and SD = 1). Each participant provides a single difference score, sampled from a normal distribution with
a standard deviation of 1. Thus, the specified population effect sizes are dz’s (Cohen, 1988). Maximum number of participants
before stopping (MaxN) = 100; minimum number of participants before checking after every trial (MinN) = 1. H0 is rejected if
B exceeds the stated threshold, and accepted if B goes below 1/threshold.

Threshold: 3 4 5 6 7 8 9 10

Population effect:
dz = 0 Reject H0 14 12 11 11 7 7 6 5

Accept H0 86 87 86 86 85 79 74 69

dz = 1 Reject H0 97 100 100 100 100 100 100 100
Accept H0 1 0 0 0 0 0 0 0
Table 2
Per cent decision rates for accepting/rejecting H0 for BH(0,1) as for Table 1, except that MinN = 10.

Threshold: 3 4 5 6 7 8 9 10

Population effect:
dz = 0 Reject H0 7 7 7 5 5 3 4 3

Accept H0 93 91 88 81 83 82 73 66

dz = 1 Reject H0 100 100 100 100 100 100 100 100
Accept H0 0 0 0 0 0 0 0 0
is driven in different directions according to which theory is true
as data accumulates. Once B has picked upmomentum in the right
direction, it may never exceed a value in the opposite direction,
even after an infinite number of participants (Savage, 1962). Thus,
having a minimum number of participants, even a small amount,
can reduce false alarm rate. Note that B is always and invariably
the correct measure of strength of evidence for discriminating
H0 versus H1, regardless of whether a minimum number of
participants is used. Nonetheless if one wanted to control false
alarm rate, in addition to discriminability, the Supplementary
Materials (see Appendix B) would allow the reader to work out
how to do so by, for example, changing the minimum number of
participants, or raising the threshold of B. (There is another reason
to run a minimum number of participants: the validity of the
Bayes factor, as for any statistical test, depends on the assumptions
of the statistical model of the data being approximately true.
A minimum number of participants allows assumptions to be
checked; Morey, Romeijn, & Rouder, 2013). The Supplementary
Materials (see Appendix B) also provide results for different types
of Bayes factors.

Appendix A illustrates how Bayes factors have better error
properties as a function of the stopping rule not only than signifi-
cance testing, but also than the use of confidence or credibility in-
tervals.

In sum, Bayes factors can be used as a measure of evidence
irrespective of the stopping rule, and hence optional stopping is
not a form of B-hacking. In fact stopping when B > 3 or < 1/3
(or any other threshold) would enable stopping when the data are
just as discriminating as needed. This guarantees the sensitivity of
a study with a minimum of participants.
The issue of bias. It might be argued that, although Bayes factors
are insensitive to the stopping rule as a measure of evidence,
the estimates of population values can be biased by the stopping
rule. Thus, we could be in the seemingly awkward position of
having fine hypothesis testing but biased parameter estimation,
depending on the stopping rule. To illustrate bias arising according
to the stopping rule, if a researcher was interested in the effect
of a drug on mood, she could decide to stop testing after she
found three participants in a row who were happier on the drug
than on placebo. The resulting estimate of how happy the drug
made people would be biased upwards. Bias is a frequentist notion
that therefore needs a reference class to define it; the reference
class in this case is defined by the stopping rule. That is, let the
researcher repeat the experiment an infinite number of times (and
to allow the argument to be clear, assume the researcher can be
taken as randomly sampling from the same population as before),
each time stopping the experiment after three participants in a
row were happier on the drug than on placebo. Even if the drug
were ineffective, each estimate would have a tendency to indicate
that people were happier on the drug; that is, the mean of all the
estimates would show greater happiness on the drug than on the
placebo. Is not this a problem for an experiment, even if analysed
by Bayesian statistics?

The clue to the solution is that bias is inherently a frequentist
notion, with need of a reference class (Howson & Urbach, 2006);
yet it is the use of reference classes that leads to the inferential
paradoxes in significance testing that do not apply to Bayesian
analyses (Dienes, 2011; Lindley, 1993). Our researcher, as a
Bayesian, would not simply average the results of the different
experiments together (in an unweighted way). The experiments
are all basic events in the reference class; but a Bayesian
does not recognize the reference class as relevant to inference.
Note that each experiment would have a different number of
participants. The events in the reference class are just one arbitrary
way of carving up the full set of data (as given by stringing
together the infinite number of experiments the researcher runs).
Different stopping rules (defining different reference classes)
would partition the same full set of data into different events.
The same data could be partitioned such that each experiment
finished with three people in a row who were happier on placebo
rather than drug (now the bias goes the other way). But all that
matters is the complete data set, not the arbitrary partitionings of
it. The experimenter should combine all her participants together,
and then average such that each participant contributes equally.
This procedure (of averaging over participants all the data that
one has so far) converges in the limit to the correct value of the
population mean (cf Rouder, 2014). The frequentist by contrast
has to work within the reference class predefined by her, and so
bias is a genuine worry: By frequentist methods, the average (over
reference class events) converges to the correct value only if the
stopping rule provides unbiased estimates.5

5 It may seem that the Bayesian solution of weighting according to participant
number is open to the frequentist; indeed, the frequentist may complain that the
solution I provide above is just as frequentist as Bayesian. But the frequentist is
conceptually obliged to respect reference classes even in meta-analyses. Consider
Smith performing a study which obtained p = 0.08 and publishing. Jones, based
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To recap: The stopping rule can introduce bias to estimates
when the expected value of the estimate is taken over the events of
a reference class. But such bias is irrelevant to Bayesian procedures,
whether theory testing (Bayes factors) or estimating population
parameters. Bayes factorswould change scientific practice because
hacking by optional stopping would be ruled out. Given the
prevalence of optional stopping (John et al., 2012), this would
produce a major change in the robustness of our science.

2.3. Corrections for multiple testing

First we consider the problem that multiple testing gives
multiple opportunities for errors, yet correcting for this introduces
inferential arbitrariness; then we consider the Bayesian solution,
which removes arbitrariness.
The problem. One way people can cheat with inferential statistics
is to make many comparisons and then focus on the one that was
significant taken on its own. The frequentist solution is to correct
for multiple testing. If with frequentist statistics one decides to
correct for familywise error rate, the correction depends on an
arbitrary specification of what the family is, allowing analytic
flexibility (for evidence of wide spread prevalence of problems
created by flexibility in defining relevant families, see Ioannidis,
Munafò, Fusar-Poli, Nosek, & David, 2014; John et al., 2012). With
Bayes the issue becomes one of specifying how different theories
are affected by all the data relevant to them, which is not arbitrary.
We consider an imaginary example to illustrate the issues and their
solution.

An example is now presented in order to consider the issue of
families of tests. Six studies are run testing the effect of referring
to the general concept of ‘‘closing’’ on how quickly a sale is closed
(i.e. how quickly the sale is agreed and completed). The maximum
time allocated to the sale was 5 min in each study. A previous
priming study using the same selling paradigm, but priming by
seating the client in soft vs. hard chairs, obtained a priming effect
of 15 s. Thus, based on the past study, in the current experiment
one might expect a priming effect of on the order of magnitude
of roughly 15 s if priming existed (so we can model H1 as a half
normal with an SD of 15 s, following Dienes, 2014). In one study
frequent verbal reference was made by the salesperson to closed
doors compared to a control condition; in another condition the
salesperson incidentally discussed Sunday closing rules; and, for
example, in the final study, the salesperson made frequent hand
gestures reminiscent of a closing door. Each condition had its
own matched control. In one of the studies, the one with hand
gestures of closing doors, reference to closure indeed resulted in
faster closure of the sale as compared to its control condition (with
opening hand gestures), mean effect = 10 s, SE = 5 s, t(30) = 2.0,
p < 0.05. BH(0,15) = 3.72, indicating substantial evidence for the
effect of priming as opposed to the null hypothesis. None of the
other studies were significant, nor had Bayes factors above 3.

A researcher might be tempted to report only the one study
that worked. It did after all involve the most embodied references
to closing (bodily hand gestures rather than word primes), and
it might be presumed, that is why that particular study worked.
The other studies, which were all different in a possibly relevant

on Smith’s p-value being tantalizing close to 0.05, runs 20 more participants, and
combines the data together in a meta-analysis. The resulting meta-analytic p =

0.04 is not significant at the 5% level just because it was Jones who topped up and
not Smith (see Section 2.1; so long as Jones topping up is conditional on the p-
value obtained by Smith, the overall error rate of the Jones–Smith pair is above
5%). Frequentists may intuitively grasp for Bayesian solutions, but that does not
make the frequentist version legitimate (for a similar argument for confidence vs.
credibility intervals, see Morey, Hoekstra, Rouder, Lee, & Wagenmakers, in press).
way, had therefore not found the right conditions for eliciting the
effect6. This type of reasoning is very tempting and theremust be a
place for it in exploration. Often researchers explore the conditions
for eliciting an effect before they find conditions that appear
to work. Nonetheless, choosing one study from many is cherry
picking. It is cherry picking because the other studies must have
been designed in the first place because it was felt they did test
the general theory that priming closure speeds closure. And when
relevant data have not been reported because the results looked
better without them, Bayes factors in themselves cannot make
up for that systematic exclusion. So if only the one ‘‘successful’’
study were reported, both Bayesian and conventional statistics
would inappropriately show the evidence to be stronger than it
actually was for the general theory that priming ‘‘closing’’ speeds
the closing of sales. (Pre-registration of studies, by itself neither
Bayesian nor non-Bayesian, is a key solution to this problem;
Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012.)
That is, bias introduced by the judicious dropping of conditions,
discussed by Simmons et al. (2011), is not in itself solved by using
Bayesianmethods on the data that remains. Bayesian analyses will
not solve all forms of bias (and then only the ones that are part of
the formal statistical problem; Jaynes, 2003). A Bayesian analysis
requires that all relevant data are included.

In fact, say that the authors report all studies, so cherry picking
is avoided. What is the evidential value of the final study showing
an effect? The orthodox approach corrects for multiple testing.
Thus, if all studies are taken as a family, a threshold of 0.05/6 =

0.008may be used for p-values, now rendering the final study non-
significant at the 5% level: The presence of an effect cannot be
asserted for the embodied priming manipulation. However, from
a Bayesian point of view, the evidence provided by the data from
specifically the final study for thehypothesis that embodiedprimes
are effective remains the same, no matter what other procedures
are tested. The Bayes factor remains 3.72 for the evidential worth
of the data from the final study, noteworthy evidence for H1
concerning this particular procedure. Is this not a problem for
Bayes?

Before considering the Bayesian solution, first note the flexibil-
ity in the frequentist one. Families do not have to be defined by the-
oretical question in frequentist statistics, and indeed often are not
(theymay e.g. be defined by degrees of freedom in an omnibus test,
e.g. Keppel & Zedeck, 1989). By contrast, the Bayesian solution is to
consider the evidence for each theory. In frequentist terms there is
no reason why families could not be made of various subsets of
the studies. In frequentist terms if the sixth study was treated as
planned it could be tested separately from the others, which are
then each corrected at the 0.05/5 level as one family. We will con-
sider planned vs. post hoc tests below. For now we consider how
Bayes just depends on the relation of the data to theories.
Whymultiple comparisons are not a problem for Bayes factors.
The priming technique used in the final study is a variant of a
number of different priming techniques addressing a common
question. Let us say the mean priming effect for the other studies
was 0. Now the overall priming effect across all studies is (10 +

0)/6 = 1.7. For simplicity, assume all studies had identical
standarddeviations andNs. The standard error for the overallmean
effect is 5/

√
6 = 2.2. Thus, BH(0,15) = 0.30, support for the null

hypothesis that priming closure does not lead to faster closures. In
evaluating the general theory that priming closure speeds closure,
all relevant data must be used. And when all data are used, the
data sensitively support the null hypothesis (using for illustration

6 A test of the difference between embodied (mean = 10, SE = 5) and the others
(mean = 0, SE = 5/

√
5 = 2.2), t(180) = 1.82, ns; BH(0,15) = 2.83, indicates only

anecdotal evidence for a difference.
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the guidelines of e.g. Jeffreys, 1939, for interpreting the size of
Bayes factors, though note Bayes factors stand by themselves as
continuous degrees of evidence).

The theory that embodied primes of closure speeds closure
can be regarded as a specific or subordinate level theory of a
general or superordinate level theory that priming closure speeds
closure. Here the specific theory received substantial evidence
considered on its own, while the general theory overall had
substantial evidence against it. Naturally, in specific cases evidence
pointed in somewhat different directions, as evidence will; but
taken together, the evidencewas clearly against the general theory.
Note there was no need to correct for multiple comparisons; we
just had to take account all evidence directly testing a given theory.
(Scientific judgement will always determine the relevant specific
and general theories.)

Bayes factors enable a properly nuanced extraction of informa-
tion from data, unlike significance testing. That is, Bayesian infer-
ence reflects the fact there is evidence for a specific theory, while
the data as a whole count against the more general theory. If one
had independent reasons for thinking embodiment was especially
important for making priming effective, more data could be col-
lected, using themanipulation of the final study, until the evidence
for both the subordinate and superordinate theories was convinc-
ing one way or the other. That is, publishing support for both the
subordinate and superordinate theories (and showing statistically
that embodiment was better than non-embodiment) would re-
quire more data than currently on the table. On the other hand, if
previous research indicated that word and embodied primes were
roughly similar in efficacy in other domains, one could simply go
with the evidence for the superordinate theory, and regard it as
substantially weakened by the data.

The same logic can be applied generally to caseswheremultiple
tests are applied, all bearing on a common superordinate theory.
Consider collecting data on a vast number of EEG and ERP
measures on meditators and matched non-meditators, hoping to
find indicators of superior attentional abilities in meditators than
non-meditators. (So the scientific question has set the relevant
superordinate hypothesis.) ‘‘Attentional ability’’ could manifest
itself in a large number of different ways: More theta density?
Larger P300 amplitudes? And on and on. The problem this
design raises is that conclusions could rely on cherry picking a
few EEG measures that came out as expected, and ignoring all
those that gave non-significant results. Without corrections for
multiple testing, how could Bayesian analyses protect against
seeing patterns in noise? Here is one way to proceed. First specify
which dependent variables measure attention, or the sort of
attention we may be interested in. Then devise a way of meta-
analytically combining all those measures into a single one. Finally
test the strength of evidence that the overall measure provides for
the superordinate theory thatmeditators have stronger attentional
skills than non-meditators. Combining evidence is not peculiarly
Bayesian (though combining evidence to obtain an overall strength
of evidence is). But the procedure does show why Bayesian
inference leads to sensible answers when it comes to multiple
testing situations. When our real interest is in a general theory,
we must assess all evidence for that theory. By realizing that non-
significant results may carry evidential value, Bayesian inference
encourages researches to use all available data. Significance testing
can encourage ignoring non-significant results as non-evidential
and hence cherry picking the significant ones.7

7 When an informedmodel is tested, Bayesian inference requires one draw on all
and only the relevant data. Strange as it is in hindsight, frequentist statistics just
have not operated in that way. Frequentists could copy Bayesians in pooling data
relevant to theories. But why not start from principles that directly lead to the right
answer, rather than those that underspecify what to do?
For another example, consider finding evidence for a difference
in activation between conditions in one tiny voxel in an fMRI
study. If that voxel is structurally and theoretically arbitrary, it
means nothing for theory development. Results mean nothing
except in so far as they inform interesting theory. The question is,
when we combine activation across theoretically and structurally
meaningful sets of voxels, what remains of the evidence? (And as
soon as you construct a meaningful theory about what is going
on, consider what other voxels are now implicated in testing
the theory. Only when all evidence relevant to the superordinate
theory has been taken into account can the superordinate theory
be evaluated.)

The strategy suggested so far relies on using a Bayes factor to
test a single degree-of-freedom hypothesis. This provides a simple
broadly applicable strategy but the use of Bayes factors is not
limited to this strategy. A superordinate theory that specifies a
rank ordering of means in different conditions can also be tested
with a Bayes factor using the methods of Hoijtink (2011). For
example, a theory that specified that the mean for the first and
second conditions should be the same but higher than those from a
third, specifies a set of ordinal constraintswhich together are richer
than a single degree-of-freedom comparison. An editor might be
especially prepared to accept a paper in favour of or against a
superordinate theory if the theory received substantial evidence
as a whole (either for or against), regardless of the direction of
specific cherry-picked comparisons. Of course, the single degree
of freedom comparisons (first mean versus second mean; their
average versus the third) would help pinpoint strength of evidence
for specific claims made by the theory.

So far it might be thought that Bayes does little better than
significance testing in dealing with multiple testing situations
(after all, in orthodox statistics one could combine evidence across
situations in theory relevant ways). Bear in mind that in Bayesian
inference one is not at liberty to define families at will; one
has to ask about the relation of data to each specific theory of
interest, so ‘‘families’’ must be picked out as the tests relevant
to a given theory. Bayesian inference can indicate the support
for or against any specified theory. But Bayesian inference can
do more, by taking into account the full Bayesian apparatus that
lies beyond non-Bayesian approaches. A Bayes factor represents
the strength of evidence data provides for one theory rather
than another. That evidence informs the posterior probabilities
for the different theories. The posterior probability that embodied
priming of closure is effective may be affected by the evidence
for priming using words; that is, if there is priming for words
it increases the probability that there could be priming from
gestures, and vice versa. The evidence from the other studies, using
different priming procedures, may rationally affect the posterior
probability of any one of the priming techniques working. This is
because these specific theories fall under the same general theory.
Gelman et al. (2013) and Kruschke (2010) describe how to set
up hierarchical models whereby the posterior distributions of the
means of different conditions is automatically influenced by the
data from all conditions. This has the effect of making it harder to
detect an effect of embodied priming if there were no priming in
any other condition (cf correction for multiple testing); but easier
if there were priming in other conditions. This rational adjustment
cannot be done with non-Bayesian approaches. In essence the
procedure provides a sort of correction for multiple testing—but
not for the sake of correcting for multiple testing, but for the sake
of making the most of all the relevant data.8

8 The procedure amounts to saying there is evidence relevant to the embodiment
prime beyond that contained in the data for just the embodiment condition.
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In sum, significance testing involves arbitrary corrections for
multiple testing, where there is no need to define families by
the theory the data are relevant to (indeed, people are often
urged to define families by other criteria, like omnibus degrees
of freedom in pre-packaged statistical routines such as ANOVA).
Bayes factors (where H1 is motivated by theory) explicitly relate
theories to data. It may be that specific theory receives support
while a general theory is weakened (or vice versa). That is what the
data say; what to do next is a matter for scientific not statistical
judgement. Bayesian inference would change scientific practice
because calculating a Bayes factor requires specifying two models,
and thus encourages being clear about what theory the data
bear on. Thus, families cannot be defined arbitrarily, but only by
reference to theories of scientific interest.

2.4. Planned versus post hoc tests

First we consider the problem, that the timing of theory relative
to data intuitively feels important, yet correcting for it introduces
inferential arbitrariness; then we consider the Bayesian solution,
which removes the arbitrariness.
The problem. One intuition is that it is desirable to predict the
precise results one obtained in advance of obtaining them. Indeed,
in an estimated 92% of papers in psychology and psychiatry,
the results confirm the predictions (Fanelli, 2010). Yet when
the predictions are made in advance of seeing the data, the
confirmation rate is considerably less (Open Science Collaboration,
2015). Scientists feel a pressure to obtain confirmatory results.
For significance testing it makes a difference whether one thought
of one’s theory before analysing the data or afterwards (planned
versus post hoc comparisons). In Bayesian inference all that
matters are the data and the theory, not their timing (because the
Bayes factor depends just on the probability of the data given the
theory).

At first, the Bayesian answer might seem strange. We have all
read papers where when we got to the end of the introduction
and read the ‘‘predictions’’, we thought ‘‘You are only saying that
because that is what your results are’’. We feel cheated. A post hoc
result is being falsely treated as a prediction. Is this not wrong?
But wait a minute. You knew there was a problem just by reading
what you had in front of you. That shows the real problem existed
independently of the timing of events; the real problem was the
relation of predictions to theory as evident in the paper itself.What
really matters is how tightly and simply predictions follow from
a simple and elegant theory. Those criteria are obviously not met
by our example paper. The paper would be flawed just as much
even if, in fact, the authors had thought of their predictions before
looking at the data. The data are not actually likely given any
stated general theory—that’s the problem. Opposite or different
predictions could just as well be generated from the stated general
theory (if any theory were stated). Consider an opposite case:
Einstein’s finding that his theory of general theory, developed
around 1915, explained the anomalous orbit of Mercury, known
since 1859. It was a key result that helped win scientists over to
his theory (Lanczos, 1974). First the result was known, then the
theory was developed. But the theory had its own independent
elegant motivation. What is important is the theory’s simplicity
and elegance both in itself and in application to the results, not
which came first.

Thus, using his procedure amounts to a different assumption than if one just
used the Bayes factor based on the embodiment data. What this evidence does is
change the prior distribution for the embodiment prime; the posterior is thereby
affected. Naturally, different scientific judgements concerning relevance can affect
the Bayesian outcome.
The role of timing in Bayesian inference. Timing is a proxy or cor-
relate of what we are really interested in: Predictions genuinely
made in advance are likely to be strongly motivated by a sim-
ple theory. Post hoc predictions are likely to be arbitrarily related
to simple theory. A useful rule of thumb is that confirming novel
rather than post hoc predictions is more likely to provide strong
evidence for a simple theory. But that is not to do with some
magic about when someone thought of a theory (someone’s bril-
liance in mentally penetrating the structure of Mother Nature in
advance may be relevant to their self-esteem but such personal
brilliance does not transfer to the evidential support of the data
for the theory: In science it does not matter who you are). The ob-
jective properties of theory and data as entities in their own right
(Feynman, 1998; Popper, 1963) need to be separated from acci-
dental facts concerning when certain brains thought of the theory.
Gelman and Loken (2013) illustrate this beautifully by consider-
ing how, in a range of real examples, different results would have
more simply confirmed a general theory than the results on offer.
The metaphysics and the epistemology get put in their right place
by Bayesian inference (getting a prediction right in advance has no
metaphysical status as an indication of good theory; but it does
help us know when we have one).

In considering what a general theory predicts in order to cal-
culate the Bayes factor, one might be tempted to use the obtained
data to refine the estimate of the magnitude of the prediction for
those very same data. That is the Bayesian way of cheating. The
data are thereby ‘‘double counted’’, once for connecting theory to
predictions, then again for consideringwhether the predictions are
confirmed, and so involve a violation of the axioms of probability
(Jaynes, 2003; Jeffreys, 1939). Double counting has to be evaluated
with respect to whether the axioms of probability are violated. For
example, the general theory that ‘priming occurs in this context’
cannot be evaluated by using the obtained data to specify what the
theory predicts (and then using the same data to test the predic-
tions of the general theory). So what about if one found the Bayes
factor not for the general theory but for a specific theory specifying
the magnitude of the effect, which happened to be the magnitude
shown in the data? That is now OK. All that matters is the prob-
ability of the data given the theory; where the theory came from
does not matter, according to the principles of Bayesian inference.
The issue, and hence the solution, is similar to that considered in
the last section: If we are as scientists interested in the general the-
ory, then an arbitrary version of it has no special interest to us be-
yond any other arbitrary version. While there may be evidence for
the specific theory that priming occurs in this context with magni-
tude 12.63 s, theremay be evidence against the general theory that
priming occurs in this context (cf. Section 2.3). Further, if a mech-
anism of priming occurred to you after looking at the data, and for
reasons independent of the data that mechanism would predict a
likely priming effect of 12 ms, the data provide support for that
theory.

The Bayesian answer helps show why pre-registered reports,
such as used in Cortex and now at least 16 other journals
(Chambers, Feredoes, Muthukumaraswamy, & Etchells, 2014;
Wagenmakers et al., 2012; see the website Registered Reports,
2015, for regular updates) are valuable. It is not due to the magical
power of guessing Nature in advance. Rather, pre-registration
ensures the public availability of all results that are pre-registered,
regardless of the pattern, which is important for all approaches
to statistical inference, Bayesian or otherwise (Goldacre, 2013).
This alone is sufficient to justify an extensive use of pre-registered
reports. In addition, pre-registration may help us judge such
things as simplicity and elegance of theory more objectively. How
much judgements of the properties of theory and their relation to
predictions are affected by knowing the results in a naturalistic
scientific context needs to be investigated further, but it is likely
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to be a substantial factor, perhaps moderated by experience
(Arkes, 2013; Slovic & Fischhoff, 1977). This is an extra-statistical
consideration that does not undermine the direct conclusions that
follow from a Bayesian analysis (how well a theory is supported
by data relative to another theory), but does raise the issue of the
context of scientific judgements within which those conclusions
are embedded.

Finally, and very importantly, pre-registration helps deal with
the problem of analytic flexibility (Chambers, 2015). There are
generally various ways of analysing a given data set, each roughly
equally justified. What should the cut off for outliers be—two or
three SD, or something else? What transformation might be used,
if the data look roughly equally normal with several? Should a
covariate be added? Should the dependent variables be combined,
or one of them dropped? And so on. Such considerations can
affect Bayes factors as much as t-tests. It is possible to B-hack.
Imagine that out of 10 roughly equally valid analysis methods,
nine indicate support for H0 and one does not, as shown by a
Bayes factor in each case. If one chose the final method because it
fitted one’s agenda better, the Bayes factor no longer reflects what
the data on balance say. However, if one chose the full analysis
method in advance, it will, with 90% probability, be one of the
nine methods supporting H0. Thus, with pre-registration of the
analysis protocol, the Bayesian analysis is more likely to reflect
the overall message of the data. Note that in this case as well, the
timing of predictions is just a proxy for the real thing;what actually
matters are the objective properties of the data as they are. If by
fluke (and it will sometimes happen) the pre-registered analysis
method was the one method that did not obtain support for H0,
the Bayesian analysis now fails to reflect the overall message of
the data, even though themethodwas pre-registered. Thus, having
all data transparently available must also be part of the solution.
Then anyone with the time can check different ways of analysing
the data for themselves. And in any argument that ensues, it may
be worth bearing in mind that the pre-registered method is likely,
but is not guaranteed, to reflect what the data say on balance.

The argument for pre-registration is particularly compelling for
fMRI. Carp (2012a; see also 2012b) considers common analytic
decisions made in the fMRI literature and shows these lead to
34,560 significance maps, which can be substantially different
from each other. Considering all of these for each experiment is not
feasible. Pre-registration would mean the Bayes factors calculated
are likely to be reflective of the data.

In sum, using Bayes factors would change scientific practice by
focusing attention on what matters—the relation of data to theory.
No one would have pressure to pretend when they thought of the
theory. People can focus on how simple and elegant the theory is
andhow tightly the predictions follow. Bayesian inference does not
in itself solve all issues to do with the timing of events however; it
should be combined with other solutions, such as pre-registration
and full transparency. Even then, Bayesian inference sheds light
on what the benefits of pre-registration actually are, and it should
provide a conceptual framework to help focus discussions about
theworth of different analyses (pre-registered versus after the data
came in). For example, even if one boldly stated in advance that
embodiment was more likely to produce priming than the use of
words, that fact just in itself would not change the Bayes factors
given in the last section (e.g. as weakening the general theory or
supporting the specific one).

3. Discussion

Bayes factors provide a symmetrical measure of evidence for
one model versus another (e.g. H1 versus H0) in order to relate
theory to precisely the data relevant to it. These properties help
solve some (but not all) of the problems underlying the credibility
crisis in psychology. The symmetry of the measure of evidence
means that there can be evidence for H0 just as much as for H1;
or the Bayes factor may indicate insufficient evidence either way.
P-values (even with power calculations) cannot make this three-
way distinction, but making it is crucial to the integrity of science.
Bayes factors can be B-hacked but they mitigate the problem
because (a) they allow evidence in either direction so people will
not be tempted to hack in just one direction; (b) as a measure
of evidence they are insensitive to the stopping rule; (c) families
of tests cannot be arbitrarily defined; and (d) falsely implying
a contrast is planned rather than post hoc becomes irrelevant
(though the value of pre-registration is not mitigated).

One advantage Bayesian inference can have is that it forces
one to think about what one’s theory really predicts. To calculate
a Bayes factor, the theory (i.e. the psychological explanation) is
represented as a distribution of possible population parameter
values. Call this the model of H1 (i.e. a mathematical description
of relations). Our psychological theories are rarely stated directly
as probability distributions over parameter values; thus, there
needs to be a translation from theory to model, a translation that
can take into account other findings in the data or literature to
refine predictions. The translation is not one to one; typically, the
same theory could be translated to different models and different
theories can be translated to the some of the samemodels. Strictly,
the Bayes factor indicates the relative support for the model
versus H0; it is an extra-statistical matter to decide what work
the theory did and how much credit it should get. For example,
the theory that caffeine improves concentration because it is a
placebo predicts that a cup of coffee should enhance performance
on a concentration task. The exact model for how much a cup
of coffee enhances concentration could be informed by the effect
sizes past studies using coffee. If the model is supported how
much does that support bear on the theory? That is a matter
of scientific judgement, not statistics per se, and will depend on
the full context (cf Gelman & Rubin, 1995). The art of science
is partly setting up experiments where interesting theories can
be compared using simple models, so that the Bayes factor is
informative in discriminating the theories. Thus, one should set up
a test of a theory, that when translated into a model, makes a risky
prediction, i.e. one contradicted by other background knowledge
(Popper, 1963; Roberts & Pashler, 2000; Vanpaemel, 2014) so that
the Bayes factor is likely to be discriminating if used to compare
the contrasting theories.

One problem with using Bayes factors is precisely that the
psychological theory could be translated to several models; yet the
support indicated by any given Bayes factor strictly refers to the
model not the theory. Thus, the distribution in the model needs
to have those properties that capture relevant predictions of the
theory in context, while the distribution’s other properties should
not alter the qualitative conclusion drawn from the resulting Bayes
factor. If the outcome is robust to large distributional changes
(while respecting the implementation of the same theory), the
distributions are acceptable for use in Bayes factors, and the
conclusion transfers to the theory (cf Good, 1983). This is referred
to as robustness checking. For example if the application of a theory
to an experiment indicates that the raw maximum difference
should not be more than about m, then try simple distributions
that satisfy this judgement yet change their shapes in other ways:
Dienes (2014) suggests a uniform from 0 to m; a half-normal with
mode 0 and standard deviation m/2; and a normal with mean
m/2 and standard deviation m/4. In all cases the (at least rough)
maximum is m yet in one case the distribution is flat, in another
the probability is pushed up to one side, and in another peaked
in the middle. If the qualitative conclusions remain unaltered,
the conclusion carries from the models to the theory. A different
approach may be to declare in advance which distribution will be
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Table 3
Decision rates for accepting/rejecting H0 for NR[−0.1, 0.1] MaxN = 100 MinN = 1.

Minimum width: None 10 ∗ NRW 5 ∗ NRW 4 ∗ NWR 3 ∗ NRW 2 ∗ NRW NRW 0.5 ∗ NRW

Actual effect:
dz = 0 Reject 16 14 7 4 3 1 0 0

Accept 0 0 0 0 0 0 0 0

dz = 1 Reject 100 100 100 100 100 100 0 0
Accept 0 0 0 0 0 0 0 0
Table 4
Decision rates for accepting/rejecting H0 for NR[−0.1, 0.1] MaxN = 1000 MinN = 1.

Minimum width: None 10 ∗ NRW 5 ∗ NRW 4 ∗ NWR 3 ∗ NRW 2 ∗ NRW NRW 0.5 ∗ NRW

Actual effect:
dz = 0 Reject 19 12 6 5 2 1 0 0

Accept 72 78 83 84 86 88 89 0

dz = 1 Reject 100 100 100 100 100 100 100 0
Accept 0 0 0 0 0 0 0 0
used (with reasons) on the grounds such a distribution is likely
to reflect the conclusion from most simple representations of the
theory (see Section 2.4).

An example of Bayes factors motivating a closer consideration
of theory is provided byDienes (2015); see also the examples in Lee
and Wagenmakers (2014): Sometimes Bayes requires that extra
data are gathered on a different condition in order to interpret
another condition, data not demanded by p-value calculations. For
example, in order to claim that a measure of conscious knowledge
shows chance performance, we need data to estimate what level
of conscious performance could be expected if the priming or
learning performance claimed to be unconscious had actually been
based on conscious knowledge. Further, as soon as one thinkswhat
level of raw effect size would be predicted in one’s study, one has
to carefully consider the literature with eyes onemay not have had
before, to estimate how well effect sizes in one paper might apply
to one’s own, given a change in context. Once effect sizes become
relevant to the conclusions one draws, people may pay attention
to them.

In conclusion, I argue that the use of Bayes factors is a crucial
part of the solution to the crisis in which psychology (and other
disciplines) find themselves. Now that the problems of what we
have been doing up to now are evident (e.g. Ioannidis, 2005; John
et al., 2012; Open Science Collaboration, 2015; Pashler & Harris,
2012), I hope Bayes is seriously considered as part of the solution—
alongwith, for example, full transparency and online availability of
materials, data and analysis (Nosek et al., 2015); greater emphasis
on direct replications as well as multi-experiment theory building
(Asendorpf et al., 2013); and increasing use of pre-registration
(Chambers, Dienes, McIntosh, Rotshtein, & Willmes, 2015).

Appendix A. Comparing error properties of a Bayes factor with
inference by intervals

One way of distinguishing H1 from H0 is by use of inference by
intervals (Dienes, 2014). This requires specifying not a point null,
but a null region, whose limits are the minimally interesting effect
size. According to the rules of inference by intervals, if the interval
(confidence, credibility, or likelihood9) is containedwithin the null
region, then the null region hypothesis can be accepted. If the
interval is entirely outside the null region, thenH1 can be accepted.

9 Though see Morey et al. (in press) for why it should be, or correspond to, a
credibility interval.
If the interval spans both the null region and regions outside,
then the data do not discriminate H0 and H1 (Dienes, 2014). The
stopping rule to guarantee a clear conclusion is therefore to stop
when the null region is either entirely within or entirely without
the null region.

In the limit as null region shrinks to [0, 0] the method becomes
significance testing, with all its faults (including the inability to
assert the null hypothesis). The properties of the method must
depend on how big the interval is relative to the null region is. If
the maximum number of participants before stopping (MaxN) is
100 and the null region is NR[0, 0] (i.e. a point null is used and
so the method is significance testing), then H1 is accepted 36% of
the time when H0 is true (using the same experimental set up as
in Table 1 and Appendix A). Table 3 shows error rates (estimated
by 1000 simulations for each value) for NR[−0.1, 0.1]. Even with
no restriction on the width of the interval, false alarms fall from
36% to 16% (first column) compared to significance testing. This is
similar to the Bayes factor for a threshold of 3. However, unlike for
a Bayes factor, H0 is never accepted when it is true. One hundred
participants are just insufficient to get the interval small enough
to fit into the null region (even though a dz of 0.1 may be quite
satisfactory for supporting H1 for many researchers: A dz of 0.1
corresponds to an r of 0.49; and for the 100 studies replicated by
the Reproducibility Project to date, 70 had an original effect size
smaller than this, Open Science Collaboration, 2015, andwere used
as evidence for H1).

Table 4 shows what happens when MaxN is increased to 1000.
Now H0 is often accepted when true, especially if we do not allow
stopping to happen until the interval is smaller than a certain
width. However, increasing MaxN increases error rates. This is
unlike the case for Bayes factors. For Bayes factors, if MaxN is
increased to 1000 then for a threshold of 10, for the null hypothesis,
the rejection rate is 5% (same as for MaxN = 100) and the
acceptance rate is 93% (up from the 69% for MaxN = 100; see
Table 1). Increasing MaxN only improves things for Bayes factors,
but increases false alarms for inference by intervals. Better error
rates can be achieved for MaxN = 100 for Bayes factors than
MaxN = 1000 for inference by intervals.

As for Bayes factors, ensuring a minimum number of trials
has occurred before stopping improves error rates for inference
by intervals. Table 5 shows the improvement for requiring 10
participants to be run before optional stopping occurs as compared
to Table 4. Still the error rates are higher than those for Bayes
factors shown in Table 2.
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Table 5
Decision rates for accepting/rejecting H0 for NR[−0.1, 0.1] MaxN = 1000 MinN = 10.

Minimum width: None 10 ∗ NRW 5 ∗ NRW 4 ∗ NWR 3 ∗ NRW 2 ∗ NRW NRW 0.5 ∗ NRW

Actual effect:
dz = 0 Reject 9 8 7 5 2 1 0 0

Accept 79 82 82 82 87 88 88 0

dz = 1 Reject 100 100 100 100 100 100 100 0
Accept 0 0 0 0 0 0 0 0
Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jmp.2015.10.003.
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