Welcome to the University of Sussex.
You should already have received information about registration, and general talks about postgraduate life at the University of Sussex. This handbook contains information specific to your degree programme, please keep it safe you may need to refer to it throughout the year.

Neil Crickmore, MSc Programme Convenor 2B2/2B4 8917/8897 n.crickmore@sussex.ac.uk

Introduction.
These notes are to introduce you to the way in which the MSc Programme is organised, and to tell you to whom you are responsible, and what action you should take if you have problems. Please keep these notes for future reference. The course runs from the first week of October until mid-September next year.

Aims and Objectives of the MSc Programme.
The aim of the GMMCB programme is to provide an in depth understanding of molecular cell biology and how this discipline is used to solve scientific problems. It will also illustrate how genetic manipulation provides new ways of creating biological products. For the students the objectives will be:

to appreciate the role of molecular genetics in modern science
to understand how molecular cell biology can be applied to biological problems
to gain experience in the practical techniques used in molecular genetics and cell biology

Postgraduate Student Handbook
The University produces a handbook that details all the rules and regulations concerned with postgraduate degrees. The handbook can be found online at:
http://www.sussex.ac.uk/academicoffice/1-3-2.html

Transferable Skills.
Successful completion of this course will require students to analyse material, including raw experimental data, and to critically evaluate it. The students will acquire laboratory skills associated with scientific research and will be able to present experimental data to others in both written and oral forms.
Structure and Organisation of the Programme.

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Organiser</th>
<th>Items of Coursework</th>
<th>Exams</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taught Course Component:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals in Molecular Biology</td>
<td>Dr N. Crickmore</td>
<td>2</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Advanced Methods in Molecular</td>
<td>Dr A. Sinclair</td>
<td>3</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options Course(s)</td>
<td>Various</td>
<td>0-2</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Topics in Genetic Manipulation</td>
<td>Dr M. West</td>
<td>2</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>and Molecular Cell Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skills for Research Bioscientists</td>
<td>Dr N. Crickmore</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Project Component:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>Dr N. Crickmore</td>
<td>3</td>
<td>0</td>
<td>75</td>
</tr>
</tbody>
</table>

Note that one credit relates to a nominal 10 hours of student effort – this includes attending timetabled sessions, background reading and preparing for assessments and seminars.

There are two main components to the programme; taught courses and project work.

Taught Courses.
In this programme you take four programme-specific courses (Practicals in Molecular Biology, Advanced Methods in Molecular Research, Skills for Research Bioscientists and Topics in Genetic Manipulation and Molecular Cell Biology) along with one of a choice of research-orientated courses, many of which are taken by final year undergraduate biochemists and biologists. The lecturers who teach these courses deal with their own field(s) of expertise and interest. The nine options from which to choose are:

- Introduction to Genes and Biochemistry Autumn term 15 credits
- Regulating the Transcriptome Autumn term 15 credits
- Molecular Genetics Autumn term 15 credits
- Genomics Autumn term 15 credits
- Introduction to Biological and Medical Imaging Autumn term 15 credits
- Programming for Bioinformatics Autumn term 15 credits
- Post-transcriptional control of Gene Expression Spring term 15 credits
- Genome Stability, Genetic Diseases and Cancer Spring term 15 credits
- Protein Form and Function Spring term 15 credits
- Genes and Development Spring term 15 credits
- Molecular Ecology and Evolution Spring term 15 credits

You need to take two of these courses. Your workload will increase significantly during the Spring term when you start your project so you are not advised to choose two Spring term courses.
It may be necessary to advise students who have not previously studied in this country that the emphasis in lectures is on describing how experimental data are obtained and used to form models, theories or hypotheses, through objective interpretation. As a result, lecture course material tends to go beyond the contents of standard textbooks, which at the level of our third year undergraduate courses are used simply as sources of fundamental information that is on the whole accepted without reasonable doubt. In addition to using conventional visual aids, lecturers usually provide students with "Reading Lists" containing references, for example, to background material or original work that is relevant to the content of their lectures. Students are expected to consult a proportion of such references to aid their understanding of the subject matter. Although in general our approach to teaching and supervision is a relatively informal one, lectures are by necessity a means of one-way information transfer. Students are strongly advised to be present at all lectures.

Projects.
A list of project areas will be available from the Programme Convenor Dr Neil Crickmore. Students should discuss projects with potential supervisors before indicating their preferred choices on the form provided. Every effort will be made to provide each student with one of their preferred projects. Please do not make firm arrangements with individual supervisors without first checking with the Programme Convenor. The projects will be allocated in November, you are then encouraged (in consultation with your supervisor) to do some background reading in preparation for starting laboratory work in January.

The purpose of a research project is several fold. Not only should you gain experience in a number of techniques and learn how to use various instruments, but you should also see how these are applied to a particular piece of scientific work through the use of well-designed experiments. Thereafter, you will be expected to record your results accurately and interpret them objectively. In the course of your laboratory work you will probably find yourself doing numerous tasks that are new to you. These will include preparing many of your own solutions and reagents.

During your project the role of your supervisor is crucial. It is the supervisor's responsibility, in consultation with the student, to define the research project. Supervisors differ considerably in the way in which they guide their postgraduate students, as, for example, in the extent to which they help with the detailed design of experiments. Some supervisors often work alongside their students at the bench, while others leave students to acquire techniques from other research workers in their laboratories or elsewhere. However, your supervisor will normally expect to talk to you at frequent intervals about the progress of your project. Even if he/she is busy he/she will probably wish you to see him/her at regular intervals each week.

All supervisors have their own research laboratories in which MSc students are allocated space, and so for the duration of your project you will become part of an active research group. Although many of the supervisors who offer MSc projects have their laboratories within the School others are in the Genome Damage and Stability Centre or the Medical School.

Students are expected to organise and carry out their project work at the same time as attending lectures, seminars, tutorials and writing course essays (see below) and during both the teaching terms and vacations. Obviously some of these pressures will be less during the vacations, but it is necessary to advise you to strike a proper balance amongst these commitments so that sufficient time is made available for laboratory work. Normally students leave the lab for a week or so prior to the May examination to revise. Experimental work should be completed by the end of July at the latest. MSc students should have started to prepare material for their dissertation by the beginning of August for submission in early September. At the start of your project you will have to prepare a short review of the literature relevant to your project and at the end you will give a short oral presentation on your project to the rest of the MSc group.

Additional Lectures and Seminars.
Attendance at special lectures and seminars is an important part of postgraduate training. All Biochemistry postgraduate (including MSc) students are required to attend seminars on safety and techniques during the Autumn Term. The Biochemistry Group runs weekly seminars given by both external and internal speakers in term-time on a wide range of research topics. Currently these are held on Fridays at 1pm and all postgraduates
are expected to attend. In addition, many other seminars in the University are of interest to biochemists/molecular biologists, and you are encouraged to attend these where appropriate. Some of these will also form part of the “Skills for Research Bioscientist” course. Finally, some of the larger research groups have their own regular meetings, of which your supervisor will inform you.

Tutorials.
At the start of the programme you will be split into tutorial groups and allocated a member of teaching faculty as a tutor. As a group you will meet with your tutor several times a term. In some of these tutorials you will cover specific items, usually connected with the “skills for research bioscientists” course, whereas in others you will be free to discuss any programme related matters. Your tutor will follow your academic progress and will also be able to provide a reference for you when you start to apply for jobs or PhD places.

Assessments.
The responsibility for the assessments of the MSc programme rests with the MSc (Biochemistry) Examination Board. The members of the Board may vary from year to year but they usually include the Programme Convenor and the Head of the Biochemistry Department. The assessment of the MSc programme is monitored by a separate External Examiner (a senior academic from another university) appointed by the University.

Mitigating Circumstances eg Illness
Instances of mitigating circumstances, e.g. illness, which could affect performance during the programme (including preparation for examination), must be communicated to the school office (JMS3B10) via a form available from this office and, where appropriate, a medical certificate.

Taught Course Work.
Several forms of assessment are involved.

a) Written examinations. Each student is required to take at least one examination on the options course(s). These examinations are held during the last two weeks of May at the same time as undergraduate "Late Finals". Details of the time and examination room are supplied to MSc students by the Postgraduate Office and copies of previous years' papers are available online, or from individual course organisers. Additionally, there will be an unseen test for the “Topics..” course which will be held at the end of the Spring term.

b) Essays. All students are required to submit essays or other coursework on topics relating to lecture or seminar course material. These essays are organised by the individual Course Organisers and contribute towards assessment of courses. Coursework must be submitted by the date required, otherwise reduced or no marks are awarded unless there are mitigating circumstances. Two copies of each piece of coursework must be submitted.

c) Portfolio. For the Skills for Research Bioscientists course you will need to prepare a portfolio of work. Although no mark will be awarded for this it must be completed for you to pass the course.

Course Assessment Weighting.
Each component of the programme is given a certain weighting as shown in the table earlier. The pass mark for each course is set at 40%. The results of these assessments are communicated to students by the Programme Convenor (usually in mid-June).

Project Dissertation and Oral Presentation.
Dissertations (up to 20,000 words) must be submitted in late August. In early September you will be required to give a short oral presentation, describing your project, to the rest of your MSc group and other interested members of the School.

The mark awarded for your project will be based mainly on your dissertation but will also take account of your performance in the laboratory. Note that you do not need to achieve good results to get a high project mark. A series of failed experiments can lead to a good mark if you can demonstrate an understanding of why an experiment may have failed and how to deal with this.
Resit Examinations.
In order to be awarded a degree students must achieve at least 150 credits worth of courses. Those students who fail any course will be offered a resit opportunity for each failed course (including the project). If the student fails the resit then they will not be offered the opportunity to take a second resit.

Oral Examinations
Oral examinations (“vivas”) may be held after the student presentations in mid-September. These examinations are only held for students who are in danger of failing the programme either because their aggregate mark is not high enough or because they have narrowly failed too many courses. During the examination each student will most likely be interviewed by an external and internal examiner. Although the oral examination would normally concentrate on the course (s) failed students should be prepared to be asked about any part of their work. The oral examination will not affect the mark awarded for your project or coursework, although students who failed to achieve the required standard for a pass may be awarded these based on their performance in the oral examination.

Final Result
The MSc Examination Board meets immediately after the oral examinations to consider all the assessments of each student, including reports on dissertations by the examiners, and a list of those recommended for the award of the degree is posted on the MSc Notice Board on level 3 of the School. A number of awards can be made:

- MSc with distinction – for students with an overall mark of >70% plus a project mark of >70%
- MSc with merit - for students with an overall mark of >60% plus a project mark of >60%
- MSc - for students with an overall mark of >40% plus a project mark of >40%
- Diploma - for students who have failed the project but passed all other courses

Plagiarism, Collusion and Misconduct
It is an offence for any student to be guilty of, or party to, attempting to commit or committing collusion, plagiarism, or any other misconduct in an examination or in the preparation of work which is submitted for assessment. Misconduct in assessment exercises, examinations or in the presentation of marks achieved elsewhere is conduct likely to be prejudicial to the integrity and fairness of the examination process. The submission of a dissertation, essay or any other assessment exercise will be considered by the examiners to be a declaration that it is the candidate's own work.

Collusion is the preparation or production of work for assessment jointly with another person or persons unless explicitly permitted by the examiners. An act of collusion is understood to encompass those who actively assist others as well as those who derive benefit from others’ work. Where joint preparation is permitted by the examiners but joint production is not, the submitted work must be produced solely by the candidate making the submission. Where joint production or joint preparation and production of work for assessment is specifically permitted, this will be stated explicitly in the relevant course documentation.

Plagiarism is the use, without acknowledgement, of the intellectual work of other people, and the act of representing the ideas or discoveries of another as one’s own in written work submitted for assessment. To copy sentences, phrases or even striking expressions without acknowledgement of the source (either by inadequate citation or failure to indicate verbatim quotations), is plagiarism; to paraphrase without acknowledgement is likewise plagiarism. Where such copying or paraphrase has occurred the mere mention of the source in the bibliography shall not be deemed sufficient acknowledgement; each such instance must be referred specifically to its source. Verbatim quotations must be either in inverted commas, or indented, and directly acknowledged.

For further information see the University’s web site on plagiarism at the follow URL: http://www.sussex.ac.uk/academicoffice/plagiarism

Problems. The MSc programme is fairly intensive in nature and, although the majority of students experience little difficulty, a few will be faced with either academic or non-academic problems. It is best to know to whom to turn for help or advice or simply to talk to. The first person you should talk to is your tutor although both
your project supervisor and the Programme Convenor may also be able to help. Finally for more serious matters (eg health or financial) you should contact one of the student advisors
http://www.sussex.ac.uk/lifesci/1-5-20-3.html

Options Courses. You are required to choose two of the following courses. Further details can be obtained from the departmental website or the 3rd year noticeboard. Once you have made your choice could you please inform Dr Crickmore which course(s) you intend to take.

INTRODUCTION TO GENES AND BIOCHEMISTRY - Course organiser: Professor Andrew Smith
This course will provide background knowledge of basic biochemistry, and the relationship of genes and proteins within the cell for those students with a non-biological first degree. The course will cover aspects of large molecules, including lipids, sugars, proteins and nucleic acids. It will cover gene expression including DNA replication, transcription and translation. It will introduce enzymes and catalysis, and provide a grounding in energy metabolism.

INTRODUCTION TO BIOLOGICAL AND MEDICAL IMAGING - Course organiser: Dr Roger Phillips
This course provides an introduction to basic imaging principles, technology and applications in biological and biomedical research. A series of computer-based modules consisting of problem solving and interactive simulations will be coupled with lectures covering topics including optics, microscopy modalities, image formation and manipulation, resolution of biological structure and deconvolution, imaging and electrophysiology and tomography in medical imaging. These technical modules will be complemented by a series of seminars on special topics to introduce research problems and recent advances in the imaging field and the exploitation of imaging technology inside and outside academia.

PROGRAMMING FOR BIOINFORMATICS (only 2 places available) - Course organiser: Dr Sue Jones
This course starts with a brief overview of the Unix operating system, and then moves onto the major element of the course: the introduction of programming in Perl (Practical Extraction and Report Language). The programming element starts with a very gentle introduction and assumes no prior knowledge of programming, so is suitable for ant students with an interest in the subject. The course includes a large number of practical sessions that will focus on the application of Perl programming to biological problems using DNA sequences, protein sequences and protein structure data. At the end of the course students will be able to write their own program code and have greatly enhanced their problem solving skills.

REGULATING THE TRANSCRIPTOME - Course organiser: Michelle West
This course takes an in-depth look at the molecular mechanisms controlling RNA expression in prokaryotes and eukaryotes focussing largely on gene transcription but also examining RNA processing events. The mechanism of action of RNA polymerase, transcription factors and RNA processing factors will be examined in detail.

MOLECULAR GENETICS - Course organiser: Dr Felicity Watts
The course will cover the application of molecular genetics to the study of processes in model systems and higher eukaryotes. Particular topics will include cell cycle and checkpoint control, recombination and mating type switching in lower eukaryotes, gene mapping and cloning disease genes in higher eukaryotes and the production of transgenic animals.

GENOMICS - Course organiser: Dr Sue Jones
This course will survey the common types of genomic and proteomic data including DNA and protein sequences, motifs, gene structure, protein interactions and expression data. The methods used to generate each type of data will be explained. The aims and methods of DNA and protein sequence analysis will be covered in depth including analysis of homology, identification of motifs and domains, pair-wise and multiple alignments and prediction of gene structure. The distribution of data through public databases will be surveyed including data formats and end-user applications for manipulation and analysis. Students will learn to access, manipulate and analyse data available on the internet, and gain an understanding of the structure and limits of these services.

GENES AND DEVELOPMENT - Course organiser: Dr Ian Roberts
This course will focus on a range of experimental methods in developmental biology. Specifically, we will look at mutational dissection and recombinant DNA methodology in genetic analysis. Mechanisms involved in the development of spatial patterns, and cellular fate restrictions in embryogenesis will also be examined. Understanding of cell proliferation and differentiation, analysis, metamorphosis, and communication between cells will also be developed.

POST-TRANSCRIPTIONAL CONTROL OF GENE EXPRESSION - Course organiser: Dr Simon Morley
This course makes an in-depth trip into the molecular mechanisms controlling RNA export, translation and decay in eukaryotes. It is focused largely on how these processes are carried out, regulated by hormones and growth factors, miRNAs, viral infection, ischaemia, hypoxia and stress and what goes wrong in the diseased state.

GENOME STABILITY, GENETIC DISEASES AND CANCER- Course organiser: Professor Alan Lehmann
The design of new therapies for cancer depends on first understanding the molecular events that cause the disease. Genomic DNA is damaged spontaneously, by chemical carcinogens and by radiation. If unrepaired, this damage leads to mutations, cancer and other developmental disorders. All cells have evolved a sophisticated array of repair and response mechanisms to deal with DNA damage. The aim of this course is to understand the molecular mechanisms that control DNA repair and to appreciate how defects in genes involved in these repair processes are associated with different, in many cases cancer-prone, genetic disorders. Throughout the course, emphasis will be placed on the review and critical evaluation of recently published experimental evidence; advances in this area rely
on a combination of biochemical analysis, genetic approaches and bioinformatics. Lectures will be complemented by discussion groups.

MOLECULAR ECOLOGY & EVOLUTION - Course organiser: Professor Trevor Beebee
Molecular Ecology & Evolution sets out to convey the excitement of a rapidly expanding field in which molecular studies have revolutionised our understanding of evolution and are having a major impact in ecology. Content includes current ideas on the origin and evolution of life; neutral theory and adaptive evolution; the concept of molecular “clocks”; the role of mutations in evolution; and the application of molecular methods in population and behavioural ecology. The importance of these approaches to conservation biology is emphasised.

PROTEIN FORM AND FUNCTION - Course organizer: Dr Darren Thompson
Protein Form and Function will provide a sense of how protein structures are related to each other and of how these structures relate to protein function. It also equips the student with the necessary knowledge and skills to allow them to learn about and appreciate this class of molecule. This course covers aspects of protein structure in detail and introduces computational and experimental techniques that are essential for studying proteins and provides the basis for the in depth discussion of more topical issues such as protein engineering and design, protein folding, chaperones and protein folding diseases.

TECHNIQUES IN BIOLOGICAL AND MEDICAL IMAGING - Course organiser: Dr Roger Phillips
This course provides practical experience in basic and advanced biological and medical imaging techniques, consisting of 10 practical laboratories in sample preparation and image acquisition, each associated with a pre-lab in imaging theory and a post-lab on data processing and analysis. Topics include instrumentation and image formation of the confocal microscope, advanced confocal techniques (spectral analysis, FRET and FRAP), live tissue time-lapse fluorescence microscopy, Total Internal Reflection Fluorescence Microscopy, Fluorescence Correlation Spectroscopy, Aromatic Force Microscopy, Computed Tomography (CT) using phantom samples with post-lab simulation and image quality control analysis, Magnetic Resonance Imaging (MRI) using phantom and human volunteers with post-lab simulation, Multiphoton Fluorescence Lifetime Microscopy and Interferometry/Optical Coherence Tomography. CT and MRI will be done in collaboration with Paul Tofts and Ken Miles of the Clinical Imaging Sciences Centre (BSMS).
<table>
<thead>
<tr>
<th>Grade</th>
<th>Essay</th>
<th>Lab Report</th>
<th>Project</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-100</td>
<td>Distinction</td>
<td>An outstanding answer well written, logical and critical. Shows originality, flair and a full understanding of the subject. Clear, relevant and consistent use of citation/referencing. Excellent sources and validation of ideas and information</td>
<td>An outstanding report. Succinct, precise, numerically accurate where relevant. A clear understanding of the principles demonstrated.</td>
<td>Outstanding report showing initiative, originality, independence and thoughtfulness. Evidence of significant body of research undertaken and independent thought and reasoning. Presentation of data presented at standard acceptable for publication in a research journal. Clear, relevant and consistent use of citation/referencing. Excellent sources and validation of ideas and information.</td>
</tr>
<tr>
<td>70-79</td>
<td>Distinction</td>
<td>An excellent account showing appreciation of all the main points. Well written critical and logical. Shows a full understanding of the subject. Clear, relevant and consistent use of citation/referencing. Excellent sources and validation of ideas and information.</td>
<td>A full report. Succinct, precise, numerically accurate where relevant. A clear understanding of the principles demonstrated.</td>
<td>An excellent report showing originality, independence and thoughtfulness. Evidence of significant body of research undertaken. Presentation of data at standard acceptable for publication in a research journal. Clear, relevant and consistent use of citation/referencing. Excellent sources and validation of ideas and information.</td>
</tr>
<tr>
<td>60-69</td>
<td>Merit</td>
<td>Comprehensive answer. Clear, logical and accurate. Well structured showing a good grasp of the subject and an ability to think around it effectively. Clear, relevant and mostly accurate citation and referencing</td>
<td>A good report. Succinct, precise, numerically accurate where relevant. May omit small amount of detail.</td>
<td>A very good report. Research written up with clarity. Evidence of significant body of research undertaken. Presentation of data at standard acceptable for publication in a research journal. Clear, relevant and mostly accurate citation and referencing</td>
</tr>
<tr>
<td>50-59</td>
<td>Pass</td>
<td>Satisfactory answer with few errors and omissions, but limited in scope and argument. Or, may be a very good answer to a closely related or simpler question. Shows sound understanding of the subject. Possible minor inconsistencies and inaccuracies in citation and referencing.</td>
<td>Satisfactory report. Significant detail omitted or analysis may contain errors.</td>
<td>Good Report. Organized well but may not demonstrate a full understanding of subject or alternately presentation of data may fall short of publication standard. Possible minor inconsistencies and inaccuracies in citation and referencing.</td>
</tr>
<tr>
<td>Score Range</td>
<td>Grade</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>Pass</td>
<td>An answer with basic merit, shows reasonable understanding of the subject, but could include irrelevant material, errors or omissions. Alternatively, a well presented essay but only showing a limited understanding of the subject material but may be a good answer to a related or simpler question. Some attempt at using citation and referencing but significant inconsistencies and errors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>Fail</td>
<td>Brief account revealing only a limited understanding of subject. Could include irrelevant material, errors or omissions. No serious attempt to cite/reference. Or major inaccuracies and omissions in citation and referencing detail and style.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-29</td>
<td>Fail</td>
<td>Inadequate answer. Includes points relating to only part of the question. Shows limited understanding of the subject. No serious attempt to cite/reference. Or major inaccuracies and omissions in citation and referencing detail and style.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>Fail</td>
<td>Answer contains mostly irrelevant information. Shows little understanding of the subject. No serious attempt to cite/reference. Or major inaccuracies and omissions in citation and referencing detail and style.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic report. It may be brief and lacking in detail or alternately have substantial analytical errors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Report may address only part of the practical tasks or contain substantial errors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inadequate report, only a basic understanding of the question shown and a limited body of research undertaken. No serious attempt to cite/reference. Or major inaccuracies and omissions in citation and referencing detail and style.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inadequate report, presentation style poor and only a basic understanding of the question shown with a severely limited body of research undertaken. No serious attempt to cite/reference. Or major inaccuracies and omissions in citation and referencing detail and style.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Report contains mostly irrelevant information. Shows little understanding of the subject or analytical skills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inadequate report, presentation style extremely poor and only a basic understanding of the question shown with little research undertaken. No serious attempt to cite/reference. Or major inaccuracies and omissions in citation and referencing detail and style.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An adequate presentation that may be too short or extensively lengthy, lacking some clarity and explanations. Brief and incomplete answers to questions demonstrating incomplete knowledge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An incomplete, poorly prepared presentation that may be too short or extensively lengthy, only covering some of the main points and lacking detail. Poor and confused answers to questions demonstrating a lack of knowledge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An inadequate presentation with poor delivery demonstrating a lack of preparation and poor relevant knowledge of the topic. Little ability to answer questions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A totally inadequate presentation demonstrating little evidence of preparation or relevant knowledge of the topic. Inability to answer questions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>