Acute Toxicity Test with *Daphnia magna*: An Alternative to Mammals in the Prescreening of Chemical Toxicity?

Laura Guimarães
Laboratory of Ecotoxicology, CIMAR-LA/CIIMAR, University of Porto

Guilhermino et al. 2000
Ecotoxicol Environ Saf, 46: 357-362
Overview

• Background
• Objectives
• Material and Methods
• Results and Discussion
• Concluding remarks
• **Precise LD50 value** for mammals is **not required** for notification of new chemicals;

• Alternatives to the traditional acute oral toxicity test (*i.e.*, fixed dose procedure, acute toxic class method, up-and-down procedure);

• **Acute tests with invertebrates** (*i.e.*, earthworms, microcrustaceans) as **first screening methods** to assess lethal toxicity to mammals and humans;

• **Difference of biological organisation level** relative to mammals;

• Use as **prescreening methods significantly reduces the number of mammals required for toxicity testing**.
Objectives

- To study the relationship between LC50 values to *Daphnia magna* of 54 chemicals and the corresponding LD50 values for the rat (based on the EU classification of chemicals).

- To further investigate the possible use of invertebrate tests as prescreening methods for assessment of the toxicity of new chemicals for classification and labelling purposes.
Materials and methods

D. magna acute toxicity tests

15 chemicals (24- and 48-h LC50) oral LD50 values to the rat obtained from the specialised literature

Pearson correlation coefficient **strong relationship between species**

Sample expanded **54 cases** acute toxicity to *D. magna* and rat gathered from the literature

Logistic regression **cutpoint** in the 24-h LC50 values that could predict toxicity to the rat

very toxic and toxic chemicals (oral LD50 < 200 mg/kg)

harmful or unclassified chemicals (oral LD50 >= 200 mg/kg).
Studied compounds

Acetic acid
Amitriptyline
Amphetamine sulfate
Aniline
Arsenic trioxide
Aspirin
Cadmium chloride
Caffeine
Carbon tetrachloride
Chloroform
Chlorpyrifos
Chromous chloride
Copper chloride
Copper sulfate
Dodecyl benzyl sulfonate
3,4-dichloroaniline
Diazepan
Diazinon
Dichlorvos
Digitoxin
Disulfoton
Endosulfan
Ethanol
Ethylene glycol
Fenitrothion
Ferrous chloride
Ferrous sulfate
Formaldehyde
Hexachlorophene
Isopropanol
Lindan
Malathion
Mercurous chloride
Methanol
Methyl parathion
Paraoxon
Parathion
p-chloroaniline
p-cresol
Pentachlorophenol
Phenobarbital
Phenol
p-Nitrophenol
Quinine sulfate
Sodium dodecyl sulfate
Sodium bromide
Sodium chloride
Sodium dichromate
Sodium fluoride
Stannous chloride
Thallium sulfate
Thiometon
Toluene
Zinc sulfate
<table>
<thead>
<tr>
<th>Chemical</th>
<th>D. magna LC50 (mg/L)</th>
<th>Rat oral LD50 (mg/kg)</th>
<th>24-h LC50, LD50</th>
<th>48-h LC50, LD50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>48 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraoxon</td>
<td>0.00055</td>
<td>0.00019</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Parathion</td>
<td>0.00219</td>
<td>0.00216</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3,4-dichloroaniline</td>
<td>0.271</td>
<td>0.100</td>
<td>648</td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>*</td>
<td>0.344</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Mercurous chloride</td>
<td>0.0027</td>
<td>0.002</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Cadmium chloride</td>
<td>0.071</td>
<td>0.017</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Copper sulfate</td>
<td>0.399</td>
<td>0.0826</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>Zinc sulfate</td>
<td>35.403</td>
<td>4.029</td>
<td>2,150</td>
<td></td>
</tr>
<tr>
<td>Sodium dichromate</td>
<td>1.854</td>
<td>0.778</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Chromous chloride</td>
<td>40.507</td>
<td>21.531</td>
<td>1,870</td>
<td></td>
</tr>
<tr>
<td>Sodium bromide</td>
<td>15,322</td>
<td>7,451</td>
<td>3,500</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>9,788</td>
<td>5,680</td>
<td>13,700</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>4,816</td>
<td>3,289</td>
<td>13,000</td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td>45.898</td>
<td>19.129</td>
<td>1,288</td>
<td></td>
</tr>
<tr>
<td>DBS</td>
<td>38.514</td>
<td>9.546</td>
<td>2,000</td>
<td></td>
</tr>
</tbody>
</table>

24-h LC50, LD50 \(r = 0.93 \)

48-h LC50, LD50 \(r = 0.91 \)
Results

2 false positives (organophosphates)
11 false negatives (metals, organochlorines, organic compounds)

Logistic curve

\[
\ln(\text{LC50}) \text{ value: } -1.50
\]

'test' to predict the probability of toxicity to the rat
Criterion validity of* D. magna* 24-h LC50 for prediction of chemical toxicity to the rat

<table>
<thead>
<tr>
<th>Daphnia (test)</th>
<th>Rat</th>
<th>Toxic</th>
<th>Nontoxic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50 < 0.22 mg/L</td>
<td></td>
<td>10</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>LC50 ≥ 0.22 mg/L</td>
<td></td>
<td>11</td>
<td>31</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21</td>
<td>33</td>
<td>54</td>
</tr>
</tbody>
</table>

High specificity
- Sensitivity (10/21) = 47.6%
- Specificity (31/33) = 93.9%

Predictive value
- Toxic Daphnia LC50 = 83.3%
- Nontoxic Daphnia LC50 = 73.8%
Criterion validity of *D. magna* 24-h LC50 for prediction of chemical toxicity to the rat

<table>
<thead>
<tr>
<th>Daphnia (test)</th>
<th>Rat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toxic</td>
<td>Nontoxic</td>
</tr>
<tr>
<td>LC50 < 0.22 mg/L</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>LC50 ≥ 0.22 mg/L</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>33</td>
</tr>
</tbody>
</table>

Relative risk of toxicity to the rat = 3.2 (1.7-6.3)
Concluding remarks

- *D. magna* test is more specific than sensitive for an indication of the toxicity to the rat;

- Using the logistic regression model, the *D. magna* test seems to have a predictive capacity comparable to that of mammalian cytotoxicity tests;

- It is an *in vivo* test taking into account the biotransformation of toxicants and potential integrated effects that occur in the organism as a whole;

- It is thus preferable to *in vitro* methods that have been considered to evaluate human acute toxicity.
Concluding remarks

- Use of **D. magna** bioassays as prescreening methods may be advantageous at least in some situations allowing the **reduction of the number of mammals required for toxicity testing**;

- **Cost effectiveness**, given the high predictive value to the rat;

- **D. magna** is a standard organism in ecotoxicology; acute toxicity testing standardised by international organisations (OCDE, 1992; EPA, 1991).

- A considerable number of **LC50 values for a great variety of chemical agents already exist**.
Work supported by funds from EU-FEDER and the Portuguese Foundation for Science and Technology (PRAXIS XXI).

Thank you very much!